Calcium functions:
- Bone & teeth maintenance
- Platelet adhesion
- Neuromuscular activity
- Blood coagulation
- Endocrine & exocrine functions
- Heart electrophysiology
- Smooth muscle electrophysiology

Calcium distribution

Dietary sources of Ca
- Dairy: cheese, yogurt, milk
- Protein: sardines, herring
- Veggies & fruit: spinach, kale, turnips, fortified orange juice
- Breads and cereals: enriched breads, grains, fortified cereals

Calcium distribution

- Normal total serum Ca: 2.1 – 2.6 mmol/L
- Normal ionized/active Ca: 1.1 – 1.4 mmol/L
- If patient has low albumin levels:
 - Request an ionized Ca level
 - Correction calc: \[\text{Ca}_{\text{corr}} = \text{Ca}_{\text{meas}} + (40 – \text{albumin}) \times 0.02 \]

Hormones and calcium homeostasis

Parathyroid hormone: released when low \([Ca^{2+}]\) detected
- ↑ Ca release from bones (osteoclast activity)
- ↑ Ca reabsorption from kidney
- ↑ conversion of Vit D to active form
- Indirectly ↑ Ca and phosphate absorption in GIT (thru Vit D)

Vitamin D: intake from diet/supplements
- Conversion to calcitriol (active form) through sunlight, liver & kidney
- ↑ Ca release from bones (osteoclast)
- ↑ reabsorption by kidneys
- ↑ Ca absorption in GIT
- Negative feedback, decreases PTH release if supratherapeutic Ca

Calcitonin: released from thyroid when high \([Ca^{2+}]\) detected
- ↓ Ca release from bone (slows osteoclast activity)
- ↓ Ca reabsorption by kidneys

Phosphate functions
- Bone structure (hydroxyapatite)
- Intracellular structures, lipid bilayer
- Nucleic acids
- ATP: muscle contract, neuro fxn
- Metabolic processes (glycolysis)
- Acid-base buffer
- Coagulation cascade, platelet aggregation

Phosphate Distribution

- Major intracellular anion
- Closely linked to Ca
- Normal PO₄: 0.8 – 1.6
- Kidney major organ regulating PO₄ excretion

Hormones &homeostasis

PTH: decreases renal reabsorption when levels high (lowers phosphate levels)

Vit D (Calcitriol)	**Calcitonin**	**Fxns**
↑	↓	Release from bone (osteoclast)
	Reabsorption by kidneys	
	Absorption in GIT	

High phosphate containing foods
- Dairy products: milk, cheese, yogurt
- Proteins: organs, sardines, shellfish
- Veggies: dried beans & peas, lentils
- Breads and cereals: whole grains, nuts
- Beverages: ale, beer, colas, chocolate
Goals of therapy
- Improve & resolve S/S
- Correct underlying causes
- Normalize serum Ca
- Prevent further complications (renal failure)

Disease causes
- Malignancy: production of PTH-like peptides, ectopic PTH, calcitriol; metastatic cancers to bone
- Hyperparathyroidism: primary (adenoma), secondary (renal disease)
- Granulomatous diseases: sarcoidosis, tuberculosis
- Other: adrenal insufficiency, thyrotoxicosis, immobility

Drug causes
- Thiazide diuretics: reduces renal excretion of Ca
- Lithium carbonate: increases Ca threshold for suppression of PTH
- Tamoxifen: increased bone resorption
- Increased Ca absorption via intake/use (milk-alkali syndrome): calcium supplements, calcitriol/calcipotriol/Vit D, vitamin A, antacid overdose

Normal Ca:
- Total: 2.1 – 2.6
- Ion: 1.1 – 1.4

Hypercacemia S/S: “bones, stones, abdominal groans & psychic moans”
- CNS: fatigue, confusion, weakness, lethargy, seizures
- CV: bradycardia, changes on cardiac ECG (shortened QTc), arrhythmias
- MSK: weakness, tenderness, bone pain
- GI: anorexia, nausea, vomiting, constipation
- GU: kidney stones, polyuria → acute renal insufficiency

General approach
- Correct intravascular volume depletion
- Block body’s reabsorption of Ca
- Block osteoclast bone resorption

Treatment algorithm

<table>
<thead>
<tr>
<th>Mild</th>
<th>Mod</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>T: 2.6 – 3</td>
<td>T: 3 – 3.5</td>
<td>T: > 3.5</td>
</tr>
<tr>
<td>Ion: 1.4 – 2</td>
<td>Ion: 2 – 2.5</td>
<td>Ion: > 2.5</td>
</tr>
</tbody>
</table>

- Address underlying issues (ex/ drug-related causes)
- Volume repletion if needed
- Repletion with normal saline
- Bisphosphonate therapy
- Repletion with normal saline
- Bisphosphonate therapy
- Salmon calcitonin
- Dialysis (if indicated)

Monitoring
- Serum Ca levels: return to normal range in 12-48h
- Sx: decrease/absence
- Volume status: euvolemia, JVP, edema on exam
- Renal fxn: SCr normalizes or returns to baseline, good urine output

Hypercalcemia: hyperparathyroidism – Cinacalet
- Binds Ca receptor on parathyroid gland, sensitizes it to serum Ca levels & reduces PTH
- Used in CRF pts; symptomatic hypercalcemia in pts prior to or who cannot undergo parathyroidectomy

Treatment options

<table>
<thead>
<tr>
<th>Isotonic saline: restores intravascular volume, promotes Ca excretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 L NS bolus, then 200-300 mL/h maintenance</td>
</tr>
<tr>
<td>Monitoring: urine output, JVP, overall volume status, SCr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bisphosphonates: disrupts osteoclasts by binding to bone surface, toxic to osteoclasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use IV pamidronate or zoledronic acid</td>
</tr>
<tr>
<td>Onset 48-96 h and duration 10-35 days</td>
</tr>
<tr>
<td>Monitor: flu-like sx, PO4 and Mg levels, renal fxn, jaw osteonecrosis w/ prolonged/repeated used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salmon calcitonin: reduces calcium re-absorption, inhibits maturation of osteoclasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset 6 h BUT tachyphylaxis occurs quickly (2 days)</td>
</tr>
<tr>
<td>Use as temporary bridge therapy for symptomatic pts til bisphosphonates work</td>
</tr>
<tr>
<td>Monitor: avoid if fish allergy (anaphylaxis), watch phosphate level (can lower)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Furosemide IV: promotes Ca excretion & removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only if hypervolemic as well</td>
</tr>
<tr>
<td>Monitor: volume status, SCr, K levels</td>
</tr>
<tr>
<td>Dialysis in severe cases</td>
</tr>
</tbody>
</table>
Hypocalcemia S/S
- CNS: irritability, confusion, fatigue, syncope, seizures
- CV: changes on cardiac ECG (prolonged QTc), arrhythmias, acute heart failure
- HEENT: difficulty swallowing
- MSK: cramps, weakness, spasms of hands and feet
- CHRONIC: coarse hair, dry skin, brittle nails, dental issues

Classic signs
- Trousseau sign: carpopedal spasm when inflating BP cuff above SBP for 3 minutes
- Chvostek sign: facial muscle twitches when tapping facial nerve anterior to the ear

Disease causes
- PTH deficiency: parathyroidectomy (hungry bone); genetic; autoimmune diseases; neck irradiation
- Hypoalbuminemia (malabsorption, malnutrition, chronic alcoholism): binding of Ca²⁺ to proteins
- Hyperphosphatemia: binding of Ca²⁺ to phosphate
- Pancreatitis

Drug causes
- Bisphosphonates
 - Reduces osteoclast activity
- Denosumab
 - Chelates with calcium (physical binding)
- Sodium citrate (blood transfusion)
 - Causes hypomagnesemia affecting Ca levels
- EDTA
- Cisplatin
- Aminoglycoside abx
- Cinacalcet
 - Inhibits PTH release
- Anticonvulsants (phenytoin, phenobarbital)
 - Increase Vitamin D catabolism

Goals of therapy
- Improve and resolve S/S
- Correct underlying causes
- Normalize serum calcium
- Prevent further complications (ex// tetany)

General approach
- Address underlying cause
- Replete with IV or PO calcium
- Resupplement other electrolytes, vit D

Drug-drug interactions with Ca
- Space Ca apart from oral alendronate, iron supplements, quinolones, oral phosphate, certain antacids, levothyroxine, bile acid sequestrants
- Watch for calcium’s effects on digoxin

Treatment algorithm (hypocalcemia T: < 2.1 Ion: <1.1)

<table>
<thead>
<tr>
<th>Mild/mod hypocalcemia</th>
<th>PO</th>
<th>Elemental Ca 1-2 g/day in 2-4 divided doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Ca gluconate 1 g over 30 min PRN</td>
<td></td>
</tr>
<tr>
<td>Vitamin D supplement PRN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acute hypocalcemia or Sx present</th>
<th>IV</th>
<th>Ca gluconate 1-3 g in 50-100 mL fluid over 15-30 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>May follow</td>
<td>3-5 g of Ca gluconate in 500-1000 mL IV solution continuous infusion over 3-12 h</td>
<td></td>
</tr>
<tr>
<td>Vitamin D supplement PRN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vitamin D options
- Vitamin D3 (cholecalciferol) Tab 400, 1000, 10000 units
- Vitamin D2 (ergocalciferol) Capsule 50,000 units
- Calcium gluconate Tab 650 mg 60 mg
- Inject 100 mg/mL 9 mg/mL

Calcium options
- Salt | Form | Strength | Elemental Ca
- Ca acetate | Tab | 667 mg | 169 mg
- Ca carbonate | Tab | 500 mg | 200 mg
- 1000 mg | 500 mg | 1000 mg |
- 1500 mg | 600 mg |
- Ca chloride | Inject | 100 mg/mL | 27.3 mg/mL |
- Ca compound | Effervescent Tab | 500 mg | 500 mg |
- Tab | 1000 mg | 1000 mg |
- Liquid | 100 mg/5mL | 20 mg/mL |
- Ca gluconate | Tab | 650 mg | 60 mg |
- Inject | 100 mg/mL | 9 mg/mL |
- Vitamin D3 (cholecalciferol) Tab 400, 1000, 10000 units
- Alfacalcidol | Capsule | 0.25, 1 mcg |
- Solution | 2 mcg/mL |
- Calcitriol | Capsule | 0.25, 0.5 mcg |
- Injection | 1 or 2 mcg/mL |

Monitoring
- Ca²⁺: normal w/in 6-10 h (parenteral); 24-48 h (oral)
- Sx: decrease or absence; negative Chvostek/Trousseau
- Mg²⁺: maintained or returns to normal (0.6 – 1.2)
- Renal fxn: SCr normalizes or returns to baseline
Hyperphosphatemia

| Normal: 0.8 – 1.6 |
| Mild: > 1.6 |
| Moderate: > 2.1 |
| Severe: >2.26 |

Hyperphosphatemia S/S

- CNS: decreased levels of consciousness, seizures
- HEENT: band keratopathy, cornea calcification
- CVS: cardiac deposition of Ca/PO₄ precipitate; arrhythmias; prolonged QTc on cardiac ECG
- MSK: soft tissue calcification; weakness, cramps, tetanus
- GI/GU: precipitation in gastric mucosa & kidney; NVD; chronic renal failure

Disease causes

- Renal disease: often in acute kidney insufficiency; almost always in chronic kidney disease
- Dietary intake: problem if impaired renal function
- Intracellular release: tumor lysis syndrome, rhabdomyolysis, hemolysis
- Hypoparathyroidism: increase in phosphate reabsorption by kidneys
- Transcellular shifts: acidosis (lactic, diabetic)

Drug causes

<table>
<thead>
<tr>
<th>Increase serum phosphate</th>
<th>Phosphate-containing laxative and meds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vitamin D</td>
</tr>
<tr>
<td></td>
<td>Calcitriol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causes nephrotoxicity can indirectly lead to hyperphosphatemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors/ARBs</td>
</tr>
<tr>
<td>Aminoglycosides</td>
</tr>
<tr>
<td>Amphotericin B</td>
</tr>
</tbody>
</table>

Goals of therapy

- Improve and resolve S/S
- Correct underlying causes
- Normalize PO₄ levels
- Prevent further complications (ex// Ca/PO₄ deposits)

General approach

- Intervene only if impaired renal function
- Dietary control and/or phosphate binders
- Enhanced elimination of phosphate

Treatment options

<table>
<thead>
<tr>
<th>Oral phosphate binders</th>
<th>Binds phosphate in GIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insoluble compound not absorbed</td>
</tr>
</tbody>
</table>

| IV normal saline and/or furosemide | Dilutes serum phosphate and enhances renal elimination |

| Dialysis | Management in pts with CKD |

Monitoring

- Serum PO₄ levels: return to normal w/in 24-48h (phosphate binders), 12h (dialysis)
- Sx: decrease/absence; signs of Ca deposits
- Ca levels: no S/S; w/in normal range
- Renal fxn: normalizes if patient has acute kidney injury

Phosphate binders

Ca acetate	Tab	667 mg
Ca carbonate	Tab	500 mg
	Tab	1250 mg
	Tab	1500 mg
Aluminum hydroxide	Tab	600 mg
Sevelamer HCl	Tab	400 mg, 800 mg
Sevelamer carbonate	Tab	800 mg
Lanthum carbonate	Tab	500 mg, 750 mg
Hypophosphatemia

<table>
<thead>
<tr>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80 – 1.6</td>
<td>0.65 – 0.8</td>
<td>0.32 – 0.65</td>
<td>< 0.32</td>
</tr>
</tbody>
</table>

Hypophosphatemia S/S

- CNS: weakness, paresthesia, confusion, seizures
- RESP: resp. failure, hypoventilation
- CVS: decreased contractility (acute heart failure), reversible cardiomyopathy
- MSK: weakness, myalgias
- GI/GU: nausea, vomiting, acute kidney insufficiency
- HEME: hemolysis, thrombocytopenia

Disease causes

<table>
<thead>
<tr>
<th>Internal redistribution (cellular shifts)</th>
<th>Respiratory alkalosis</th>
<th>Re-feeding syndrome (malnutrition)</th>
<th>Sepsis</th>
<th>Post-parathyroidectomy (hungry bone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased urinary excretion</td>
<td>Hyperparathyroidism</td>
<td>Renal tubular diseases</td>
<td>Chronic alcoholism</td>
<td></td>
</tr>
<tr>
<td>Decreased GI absorption</td>
<td>Malnutrition (decreased intake)</td>
<td>Vomiting diarrhea</td>
<td>Chronic alcoholism</td>
<td></td>
</tr>
</tbody>
</table>

Drug causes

<table>
<thead>
<tr>
<th>Certain drug overdoses (insulin, ASA)</th>
<th>Drug overdoses w/ acid-base effects may cause PO₄₃⁻ redistribution from extra to intra-cellular compartments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furosemide</td>
<td>Increases urinary phosphate excretion</td>
</tr>
<tr>
<td>Oral phosphate binders</td>
<td>Decreases GI absorption of phosphate</td>
</tr>
<tr>
<td>Vitamin D deficiency</td>
<td></td>
</tr>
</tbody>
</table>

Goals of therapy

- Improve and resolve S/S
- Correct underlying causes
- Normalize phosphate
- Prevent further complications (ex// acute resp/heart failure)

General approach

- Phosphate replacement over several days
- Oral replacement limited by diarrhea
- IV replacement often used

General approach

- Serum phosphate: normal w/in 24h (parenteral), 48 h (oral)
- Sx: decrease or absence; no signs of resp. or cardiac failure
- Serum Mg, K: follow if re-feeding syndrome
- Serum Ca: remains normal after repletion

Treatment algorithm

<table>
<thead>
<tr>
<th>Mild and symptomatic</th>
<th>Oral</th>
<th>Phosphate solution 500 mg (4 mL) bid-qid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild-mod & asymptomatic</td>
<td>IV</td>
<td>Na phosphate 15 mmol IV via peripheral or central line</td>
</tr>
<tr>
<td>Severe and/or symptomatic</td>
<td>IV</td>
<td>K phosphate 15 mmol IV (higher doses require central line)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Sodium phosphate 15-45 mmol IV</td>
</tr>
</tbody>
</table>