Lecture 3

Inhaled Drugs Reaching Site of Action

Spherical and distribution: quantifies particle size & distribution; takes into account that particles are NOT spherical and are heterogeneous in size

- $D_{aero} =$ diameter of perfect spherical object, with density of 1 g/cm3 & has the same falling velocity as the drug particle
 - Higher the falling velocity, the larger the diameter of the 1 g/cm3 sphere
 - If a drug particle has a density of 4 g/cm3, its aerodynamic equivalent (with a density of 1 g/cm3) would have a larger diameter (would appear larger) than the actual drug particle
- For any given particle, D_{aero} can be calculated from its falling velocity
 - Falling velocity = constant speed a particle will assume when falling, after the initial acceleration phase, due to the forces of buoyancy and drag counteracting that of gravity
 - Falling velocity is affected by the particle’s density, volume & drag coefficient

Aerodynamic Diameter

- Determined by D_{aero} of particle

Corticosteroids: target intracellular steroid receptors & reduce transcription of pro-inflammatory mediators within the airway wall

- Generations 1-22
- Airway epithelium, submucosal gland cells, inflammatory cells (reduces recruitment & activation)

Target for Asthma Drugs

β_2-agonists: target β_2 adrenergic receptors located on autonomic nerve terminals in the smooth muscle of large & small airways

- Generations 1-22
- Autonomic nerve terminals not located in alveoli because there’s no smooth muscle

ADVANTAGES OF INTRAPULMONARY DRUG DELIVERY:

1. Preferable pharmacokinetics \rightarrow enhanced therapeutic efficacy
 - Faster onset of action; full therapeutic concentration of drug attained at site of action quickly
 - Reduced time to peak therapeutic effect
 - Slower clearance of drug deposited in the airways compared to systemic drug clearance
2. Minimization of adverse effects & toxicity
 - Because drug is delivered to the site of action, a lesser dose is required to attain the therapeutic effect
 - Also means less systemic exposure to the drug

Mechanisms of Intrapulmonary Particle Deposition

Inertial Impaction: \geq 8-10 µm

- High momentum upon inspiration
- Unable to change direction with airflow at branch points in airways $=$ impacts itself at back of mouth, trachea, branch points, etc
- Largely deposited in URT

Sedimentation: 0.5 – 5 µm = Ideal Particle Size

- Momentum allows for change of direction with airflow = reaches lower airways
- Mass sufficient such that gravitational force allows for particle sedimentation in mucous layer of airway wall (mostly alveoli)

Diffusion: \leq 0.5 µm

- Low momentum, readily changes direction with airflow & Brownian motion occurs
- Deep penetration into airways & alveoli, but poor impaction
- Low mass, so gravity cannot readily facilitate sedimentation into mucous layer of airway wall
- Much is exhaled upon expiration

Drug Clearance From Lung

- Exhalation
- Systemic circulation
- Lymphatic uptake
- Enzymatic degradation (in cells, interstitial fluid, mucus linings) – ex/CYP450, peptidases, esterases
- mucociliary escalator clearance: particles are expectorated or swallowed
 - Cells lining upper airways covered with cilia that beat at 1000 beats/min in an upward motion toward throat
 - Particles impacted in upper airways is trapped in mucus & moved by ciliary transport, aided by coughing & sneezing
AEROSOL: a suspension of fine solid particles or liquid droplets, or solid particles dispersed within liquid droplets, within a gas phase
> Ex / fog, perfume spray, haze (pollution), clouds, sunscreen spray
> Aerosols don’t necessarily originate from pressurized system

pMDI aerosol: a pressurized delivery system that, upon actuation, emits a fine dispersion of liquid droplets and/or solid particles containing one or more active ingredient in a gaseous medium

METERED DOSE INHALERS

OVERVIEW
- Multidose, versatile devices
- Drug is expelled in a metered volume of “Liquefied Gas Propellant” (LGP) from a pressurized container
 - Other excipients may be used
- Formulated as solutions or suspensions
- Particle size = critical issue (target = 0.5 to 5 \(\mu m \))

pMDI aerosol formation: actuation opens valve, allowing LGP + drug to exit nozzle
> Upon evaporation of propellant from aerosol, solid particles form and agglomerate = residual particles – have the correct MMAD, allowing delivery to desired regions of respiratory tract with inhalation = residual particles

Propellant physiochemical properties & requirements:
- Boiling point must be well below ambient temperatures
- Within a closed, pressurized container, forms a two-phase system comprised of saturated vapor + liquid, in dynamic equilibrium
- Gives constant vapor pressure with varying volumes of liquid within the closed container system (i.e. must be highly volatile)
- Non-flammable, non-toxic
- Compatible with drug

Dose metering in pMDIs:
1. Canister not depressed: metering of a single dose (liquid enters chamber)
2. Canister partially depressed: disconnects metering chamber
3. Canister fully depressed: discharge of dose from metering chamber

Factors affecting residual particle size (MMAD):
- Chemical nature of propellant, including co-solvents, and its rate of evaporation
- Orifice diameter of actuator nozzle
- Solutions tend to generate finer residual particles than suspensions
 - In susp: size of suspended particles affects residual particle MMAD

HFA-134A: major propellant used
- Boiling point: -26.3°C (at 1 atm); vapor pressure: 5.6 atm (at 20'); somewhat non-polar (LogP = 1.1)
- Formulation with HFA challenging due to solubility issues
 - No clear correlation b/w drug LogP & solubility in HFA
 - Approved surfactants to aid with drug wetting/solubility are insoluble in HFA

HFA Solutions: despite poor solubility, solutions are made possible via use of co-solvents (almost all ethanol \(\pm \) water)
> Ethanol can aid with dissolution of hydrophilic drugs via H-bonds, and via van der waals for hydrophobic drugs
> Water can aid with drug dissolution via H-bond formation
 - Not completely evaporated prior to inhalation, therefore can maintain particle MMAD above a minimum threshold
- Co-solvents also lower vapor pressure inside the canister, and generally increases the MMAD of residual particles
- Ethanol can affect the structural morphology and aerodynamic diameter of the aerosolized drug particles generated (above 10% w/w, MMAD > 5\(\mu m \))
- Single use of a marketed HFA-ethanol pMDI was found to have a BAC of 0.015 mg/100mL

HFA Suspensions: crystalline drug must be processed to yield particles having a suitable size & size distribution (milling, spray drying, supercritical fluid methods) prior to susp. In HFA
> Size of suspended particles to yield residual particles with the correct MMAD & size distribution must be determined experimentally

MDIs in asthma: for \(\beta_2 \) agonists, pMDI are not better than other DDS, but are cost-effective = GOLD STANDARD
SPACER DEVICES
- Increases distance between orifice and oropharynx
- Decreases velocity of spray entering the oropharynx, facilitating less impaction of drug particles in the back of mouth (due to less momentum) = increased proportion of residual particles that can be delivered to targets = IMPROVED LUNG DEPOSITION AND INCREASED EFFICACY
- Allows more time for LGP vaporization/evaporation, so droplet size is smaller (which can enhance lung deposition
- Actuation/inhalation synchronization is less or not important
- Reduced oropharyngeal side effects for steroids (throat irritation, dysphoria, thrush)

DRY POWDER INHALERS (DPI)

Overview: designed to eliminate coordination problems associated with MDIs, and to eliminate CFC-containing MDIs
- No propellants = PURE DRUG or DRUG-CARRIER MIXTURE delivered from device as dry powder
- Devices are BREATH ACTUATED = powder inhaled only when patient inhales
- Drug particles have been processed for size reduction into critical particle MMAD size

Drug carriers: carriers prevent drug particle aggregation (strong tendency with fine particles/powder due to increased surface free energy) → ensures that DPI system can deliver de-aggregated drug particles which have the correct MMAD
 > Lactose powder (particle size 30-100 µm) commonly used as a carrier

Factors influencing lung deposition
1. **Particle de-aggregation:** poor lung deposition associated with inefficient drug particle deaggregation
 > To ensure particle de-aggregation:
 a. Use lactose as a carrier
 b. Generate turbulent airflow within the DPI device (no carrier or other excipient needed EXCEPT in Oxeze)
2. **Inspiratory flow rate:** poor lung deposition is associated with a poor inspiratory flow rate (IFR)
 > DPIS are passive systems, so pt must provide energy to disperse powder from device
 > Higher shear forces lead to greater proportion of de-aggregated drug particles, which depends on pts ability to pull a certain airflow through the device
 > Pts with compromised respiratory fxn may not be able to generate sufficient IFR
3. **Ambient temperature and humidity:** exposure of powder to moisture and changes in temp. could compromise efficacy of device
 > Moisture/temperature fluctuations could cause drug dissolution, recrystallization and particle aggregation

Stripping of drug from lactose carrier particles:
1. Dry powder formulation is a drug-carrier mixture (static powder bed)
2. Drug/carrier mixture dilates and forms an aerosol
3. With continuous airflow, drug aerosol is stripped from lactose carrier
4. Lactose particles impact, while drug particles go to target site

Factors influencing lung deposition
1. **Particle de-aggregation:** poor lung deposition associated with inefficient drug particle deaggregation
 > To ensure particle de-aggregation:
 a. Use lactose as a carrier
 b. Generate turbulent airflow within the DPI device (no carrier or other excipient needed EXCEPT in Oxeze)
2. **Inspiratory flow rate:** poor lung deposition is associated with a poor inspiratory flow rate (IFR)
 > DPIS are passive systems, so pt must provide energy to disperse powder from device
 > Higher shear forces lead to greater proportion of de-aggregated drug particles, which depends on pts ability to pull a certain airflow through the device
 > Pts with compromised respiratory fxn may not be able to generate sufficient IFR
3. **Ambient temperature and humidity:** exposure of powder to moisture and changes in temp. could compromise efficacy of device
 > Moisture/temperature fluctuations could cause drug dissolution, recrystallization and particle aggregation

Diskus: unit-doses of drug-carrier mixture are contained in foil blister packs within the device
 > Index wheel guides the blister pack strip to the mouthpiece (via a “ratchet mechanism”) and peels off the foil lid
 > On inhalation, the powder moves into the airstream

Turbuhaler: inhaled airstream picks up powder loaded in dosing unit, passes through inhalation channels and through mouthpiece
 > The spiral inhalation channel facilitates TURBULENT AIRFLOW sufficient to cause de-aggregation of drug powder (or drug-carrier mixture for Oxeze)

Spiriva HandiHaler: blister-packed capsules containing TIOTROPIUM BROMIDE, blended with lactose carrier
 > Capsules that are exposed to air and not used immediately should be discarded (humidity)
 1. Capsules placed into centre chamber of HandiHaler device & is pierced by pressing & releasing button on side
 2. Drug-carrier mixture is dispersed into the airstream when pt inhales through mouthpiece, and drug is stripped from carrier with airflow for deposition to the target regions of the lung

Nebulizers: liquid in separate unit-dose nebul (diluted wi/ water or saline) → placed in a reservoir/nebulizer unit → compressed air continuously fed into unit & creates aerosol → aerosol droplets inhaled (mouthpiece, face mask
 > Lung deposition is variable, depending on nebulizer device & operating condition – most air or O₂ is lost