Lecture 9
PK Considerations of the GIT

ORAL ABSORPTION:
- Consideration of the GIT absorption is primarily with respect to oral formulations/presentations
- To be absorbed, a drug given orally must be relatively impervious to low pH & GI secretions (incl. enzymes)
- Absorption of oral drugs involves transport across membranes of the epithelial cells in the GIT

ORAL ABSORPTION CAN BE AFFECTED BY:
- Differences in luminal pH along the GIT
- Surface area per luminal volume
- Blood perfusion
- Presence of bile and mucus
- The nature of epithelial membranes

PLACES ABSORPTION CAN OCCUR IN THE GIT:

ORAL MUCOSA:

<table>
<thead>
<tr>
<th>CHARACTERISTICS AFFECTING ABSORPTION</th>
<th>Favour</th>
<th>Prevent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin epithelium</td>
<td>Contact time is usually too brief for substantial absorption</td>
<td></td>
</tr>
<tr>
<td>Highly vascular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEMIC IMPLICATIONS: avoid first pass metabolism

EXCEPTIONS:
- Buccal administration (drug product absorbed across cheek)
- Sublingual administration (drug product under the tongue)

THE STOMACH:

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large epithelium surface area</td>
<td></td>
<td>Thick mucous layer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short transit time</td>
</tr>
</tbody>
</table>

ANATOMY AND PHYSIOLOGY OF THE STOMACH:
- Rugae increase surface area
- Thick muscular banding
- Fundus sheath, with moderate perfusion

STOMACH pH AS A FACTOR:
- Changes to the pH of the stomach can affect dissolution of drugs from their presentation/dosage forms (tablets, capsules, powders, suspensions, etc)
 - Increasing pH will decrease ionization of weak bases and promote absorption of the neutral species
 - Implications for bicarbonate (i.e. antacids)
 - Lowering pH and promote absorption of weak acids
 - Implications in disease states (i.e. ulcers)
- For example: increased gastric pH will delay tetracycline dissolution from its dosage form, causing much lower absorption

GASTRIC EMPTYING: critical parameter (most drugs absorbed in SI)
- Gastric emptying is usually function of volume of gastric contents
 - Lipids are emptied faster than solids
 - Volume of gastric contents is important regulating factor
 - Stretching of stomach tissue is the only physiological control that increases rate of gastric emptying
- Continuous electrical waves (“slow waves”) influence contractions at the antral sphincter to allow entry into the small intestine
 - These contractions are influenced by local and distant nervous reflexes, as well as hormones
- Usually the rate-limiting step for entry into the intestine is the gastric emptying rate
 - Changes to this rate can be caused by:
 - Food
 - Hormones
 - Severe pain
 - Gastric ulcer
 - Diabetes and other metabolic diseases
 - Drugs (alcohol, anticholinergics, narcotics, ganglion blocking drugs, antacids and metoclopramide)
- Usually, increasing the rate of gastric emptying and gastro-intestinal motility increases the rate of drug absorption
 - Delayed drug absorption usually causes therapeutic failure, especially if drug has short biological half-life (as stomach’s capacity for absorption is not high enough)

DRUG-DRUG INTERACTIONS (DDI):
Indirect DDI:
- Gastric emptying can be slowed by TCAs & opiates (co-administered drugs may not achieve therapeutic levels = lowers absorption)
- Drugs such as erythromycin that speed intestinal transit time, also potentially causing lack of absorption

Direct DDI:
- Can also occur where drug molecules interfere with each other
 - Excipients in the GIT altering another drug’s thermodynamic activity for absorption
 - Direct binding of tetracyclines with metal ions in the gut (don’t take them with milk because calcium ions will bind the tetracyclines and prevent absorption)

THE SMALL INTESTINE:
- The small intestine has the largest surface area for drug absorption in the GIT, and its membranes are more permeable than those in the stomach
 - For these reasons, most drugs are absorbed primarily in the small intestine, are absorbed faster in the intestine than in the stomach
- Movement down the small intestine is by peristalsis (rhythmic muscular contractions)
- The intraluminal pH is 4-5 in the duodenum but becomes progressively more alkaline, approaching 8 in the lower ileum
 - Similar to the pH effects observed for the stomach, weak acids are most successfully absorbed in the duodenum, whilst weak bases are better absorbed in the jejunum and ileum
PLACES ABSORPTION CAN OCCUR IN THE GIT (CONTINUED):

THE SMALL INTESTINE (CONTINUED):

PASSIVE DIFFUSION IN THE GUT:
- Drug characteristics favouring good paracellular absorption are:
 - Small molecules (molecular weight 500 Da)
 - Hydrophilic (ionized at intestinal pH of 5.5-7.0)
 - Positive charge (because cell junctions have negative charge)
- Caveat to the "positively charged" idea
 - Paracellular junctions are relatively rare in the gut (<0.1% of total surface area) and become less permeable as you travel along gut (from jejunum to colon)
 - Effectively, the junctions become "tighter"
 - Therefore, transcellular transport (i.e. lipid diffusion) is the most important
- The intestinal lumen also contains a 25 µm layer of water (= "unstirred water layer") – but doesn’t appear to affect PK
- Membranes on basolateral (blood) side of intestinal mucosal cells are thinner, and contain less cholesterol & glucolipids than on apical (GI lumen side)
 - This makes basolateral membranes more fluid and permeable than apical membranes = once apical membranes are crossed, permeability is higher
- GI microflora may also reduce absorption
 - Bacteria can break down drugs (ex// bacterial cleavage of abx in intestine) before they are systemically available
- Drug metabolizing enzymes in the intestines can cause low bioavailability (CYP3A4 and UGT 1A7/1A8/1A10)
- Decreased blood flow (ex// shock, ChF) may lower concentration gradient across intestinal mucosa and reduce absorption by passive diffusion
 - Dosage adjustment is almost always required in these pts

PARAMETER Pe:
- Pe = speed in cm s⁻¹ (usually 10⁻⁴ or 10⁻⁵ cm s⁻¹) at which a molecule is transported across a membrane, cell, endothelium or epithelium
- Determined by interplay between characteristics of membrane, cell, endothelium or epithelium & the molecules
- Molecular properties important for permeation include:
 - Molecular weight
 - Degree of ionization
 - Size and shape
 - Polar surface area / non-polar surface area
 - Lipophilicity
 - # of H-bonding acceptors & donors
- The MW and lipophilicity of new drug candidates have increased over time, leading to poorer intestinal Pe and/or solubility
 - Poor GI solubility is now the largest problem preventing good oral absorption and F from new drug candidates

TRANSPORTERS IN THE INTESTINE:
- Transporters differ in different parts of the intestine:
 - Expression of P-gp is 5 times higher in ileum than in duodenum and colon
 - OCT1, MRP3, OCTN2, and MCT1 highest expression in colon than in proximal intestine
- The drug transporter proteins also differ between apical and basolateral sides of the intestine:
 - P-gp, BCRP and MRP2 are efflux proteins on apical membrane
 - MP3 is an influx transporter on basolateral side
 - PEPT1 & ASBT are influx transporters on both sides

TRANSPORTERS AND LOWERING F:
- Been most studied with transporter P-gp
 - Digoxin, paclitaxel and HIV protease inhibitors (dinavir, nelfinavir and saquinavir) are known to have a major component of efflux back into intestine mediated by P-gp active transporters
 - In terms of dosing, this is built into the dosing profiles during development

TRANSPORTERS AND INCREASING F:
- Polymorphic variants of the transporter that are genetically inherited and may have low expression
 - Example: polymorphism in exon 26 (C3435T) → reduced intestinal expression level of P-gp = increased F of digoxin (potential to exceed therapeutic window)
 - ADR that has the potential for avoidance using precision medicine approaches

INTESTINAL TRANSIT TIME:
- Once into the intestine, transit time is about 4-10 h (on average) to get absorbed before entering colon
 - Colon is relatively impermeable because the solid contents are compacted for excretion
 - Fortunately, most drug absorption is rapid and a Tpeak is reached within 30 mins of administration
 - Arguments about diarrhea are technically correct but are physiologically difficult to support (except in severe cases such as dysentery for drugs with very narrow therapeutic indices)
 - Variations of intestinal transit time can alter drug absorption (and F)
 - For drugs absorbed by active transport (ex// B vitamins), even moderately decreased intestinal time can result in clinically sig lower drug levels entering portal circulation
 - When intestinal transit time is profoundly increased (ex// dysentery) almost all drugs suffer from a lack of absorption and therapeutic failures can occur

DISEASE STATES:

ULCER:
- In addition to pH changes, treatment with sucralfate can be problematic if other drugs will be co-administered
 - Sucrelafate is a viscous drug that coats the ulcer allowing for healing from underneath which can decrease absorption of several drugs (theophylline, digoxin, fluoroquinolones)

MALABSORPTION SYNDROMES:
- Malabsorption syndromes occur when bowel is prevented from absorbing critical food constituents
 - They also affect drug absorption
 - Malabsorption can be caused by conditions such as celiac disease, Crohn’s disease, IBD, lactose intolerance and intestinal damage

INFLAMMATORY BOWEL DISEASES:
- Most drugs have reduced absorption in IBD, esp. abx and analgesics
 - In contrast, propranolol has increased absorption in Crohn’s (due to inflammation causing leaky inter-cellular junctions in intestine)
 - Celiac is similar – generally drugs are absorbed further down GIT (absorptive characteristics not favourable = lower F)

BLOOD FLOW:
- Any disease affecting blood flow can affect absorption from GIT
 - For rapidly absorbed lipophilic drugs, intestinal blood flow may be rate limiting step (ex// ethanol, newer lipid formulations)
 - In critical illnesses (HF, Hypovolemia, shock) intestinal blood flow can be so low that it will be the rate-limiting step for many or all drugs = alternative route of administration required

Collier
SLOW RELEASE/CONTROLLED RELEASE FORMULATIONS:

• Controlled-release forms are designed to reduce dosing frequency for drugs with a short elimination half-life and duration of effect
 o These also limit fluctuation in plasma drug concentration, providing a more uniform therapeutic effect while minimizing adverse effects
 o SR formulations have also been developed to slow absorption of drugs with high abuse potential
 ▪ Oxydodone original formulation could be crushed and when taken orally had a Ka closer to IV than oral → Purdue Pharma re-formulated the drug after the opioid epidemic into a gel matrix that is resistant to crushing effects and will not release powdered drug
• Absorption rate is slowed by:
 o Coating drug particles with wax or other water-insoluble material
 o Embedding the drug in a matrix that releases it slowly during transit through the GIT
 o Complexing the drug with ion-exchange resins
• Most of the absorption of SR formulations is in the large intestine – which is empirically sensible, as the drug is absorbed slowly over the transit time and spends longer in the larger intestine than the small
 o Crushing or otherwise distributing a CR tablet or capsule can often be dangerous due to large-scale release of drug (overdose)
• SR formulations must balance GI transit time with slowed Ka very well so that absorption & therapeutic efficacy are reached before the dosage form is expelled

SUPPOSITORIES:

• Generally, oral administration is the route of choice for ease of administration; however in some circumstances it is impractical or impossible (ex// N&V, convulsions or recurrent fitting)
 o In these cases, rectal administration may be a practical alternative
 o Rectal administration is now well accepted for delivering anticonvulsants, analgesics, and for inducing anesthesia in children
• The rate and extent of rectal drug absorption is usually lower than with oral administration, because:
 o Relatively small surface area available for drug uptake
 o Compaction in colon with other material
 o Lack of paracellular pathway
• Composition of the rectal formulation is an important factor in the absorption process by determining the pattern of drug release
 o Adjuvants used are primarily glyceride mixtures (acts as carrier) and/or non-ionic surfactants (disrupts cellular membrane slightly to promote absorption)
• For a small subset of drugs, the extent of bioavailability from the rectal route exceeds oral values
 o This is NOT an absorptive characteristic, but reflects avoidance of first-pass metabolism in the liver, producing higher systemic values
 o Drugs for which this is clinically relevant include: morphone, metoclopramide, lidocaine and propranolol
• Local irritation is an acknowledged problem with some formulations
 o Ex// in the past, long-term medication with rectal ASA caused ulceration = no longer recommended
 o Localized irritation has been described for several drugs and their formulations even after a single administration
 o The very action of some of the excipients and adjuvants used to increase absorption (i.e. disruption of membrane properties) are the cause of this SE