SUPPOSITORY FORMULATION:
- Suppository base
- Medicinal ingredient
- Shape and size
- Excipients needed for formulation
 - Absorption enhancers

POURING:
- Pouring temperature: has to do with behavior of suppository base upon cooling
- Pouring from a mortar: last suppositories have more drug than the first ones
- Pouring from squeeze bottle: first suppositories have more drugs than last ones

SUPPOSITORY BASES:
- Solid form at room temp. 15-25°C and melts at body temp (for oil-based suppositories)
- Amorphous, smooth, non-irritating vehicle
- Medicinally inert without side effects
- Types:
 - Oleaginous (fatty/oily) bases (lipophilic)
 - Theobroma Oil (cocoa butter) & synthetic triglyceride mixtures
 - Water soluble bases (hydrophilic)

OLEAGINOUS SUPPOSITORY BASES:
- COCOA BUTTER (THEOBROMA OIL):
 - Forms a solid < 30°C and melts at 30-35°C
 - Do not heat > 35° because it’s polymorphic = convert to metastable structure that melts at lower temp (< 25°C)
 - Non-irritating oil which is capable of dissolving certain drugs
 - MP can also be altered by drugs
 - Lower MP: phenols (estradiol, Propolol, diethylstilbestrol, choral hydrate)
 - Raise MP: additives like beeswax and spermaceti

SYNTHETIC TRIGLYCERIDES:
- Hydrogenated vegetable oils
 - Polyglyceryl Suppository Base
 - Fattibase (TGs from palm, palm kernel, coconut oils)
- Wecobee (coconut oil) F5, M, R, and S (various melting points) 33-40°
- Other bases:
 - Dehydag
 - Hydrokote
 - Suppocrir
 - Witepsol

WATER SOLUBLE BASES:
- Contain glycerinated gelatin or the PEG polymers
- Can be used to dissolve a single drug or 2 or more drugs
- May melt at temperatures higher than body temp
- May not require refrigeration
- Useful for prolonged release or delayed release of medication from suppository

POLYETHYLENE GLYCOL POLYMERS:
- Available in a wide range of hardness and melting points
- Does not melt at body temp (can be stored at room temp)
- Can be molded or compressed
- One or more drugs can be formulated into these bases
- PEG combinations:
 - PEG 1450 (30%)/PEG 8000 (70%) = high MP
 - PEG 300 (60%)/PEG 8000 (40%) = med MP
 - PEG 30 (48%)/PEG 6000 (52%)

GLYCERINATED GELATIN:
- Translucent, resilient, gelatinous solids
- Dissolve or disperse in mucous secretions, provides prolonged release of active ingredients with dissolution of suppository
- Keep in air tight container as it can absorb moisture from the air
- Preservative required if prolonged storage (> 30 days)
- Use water or water-based lubricant for administration

ABSORPTION ENHANCERS:
- Increase rectal absorption of active ingredients by enhancing membrane permeability
 - Capric acid, lauric acid, sodium caprate or laurate or cholate or salicylate
 - Sometimes unpredictable absorption increase
- Non-ionic surfactants can be added to oil base suppositories to increase release of lipophilic active substance

EXCIPIENTS:
- Are used as fillers (less costly than bases)
- Can be used as dispersing agents to more evenly spread & homogenize active ingredients
- Used to stabilize the compound
- Act as a preservative

USES:
- When oral administration is difficult (N&V) or drug is incompatible with GIT, or parenterall involves higher risks or barriers
- Nausea, motion sickness, anxiety, and bacterial or fungal infections
- Drugs for systemic treatment where other routes of administration are limited or difficult
 - Children, unconscious ...

FACTORS AFFECTING RECTAL DRUG ABSORPTION:
- Colonic/rectum content: better absorption when rectum is empty (passive diffusion)
- Absorption via lower hemorrhoidal veins: leads directly to inferior vena cava
- pH of rectal fluids: weak acids/bases = better absorbed
- Lipid-water partition coefficient: high = better absorb
- Degree of ionization
- Particle size: smaller particle size is better absorbed

RECTAL DRUG DELIVERY:
- Various levels of acceptability in different countries and cultures (more common in Europe)
- 10-25 mL can be retained reasonably well in rectum
 - Relatively constant environment with reproducible absorption (temp is consistent, pH mostly consistent)
- Avoids first pass effect by liver

SUPPOSITORY ADMINISTRATION: pics on slides 6-8

SUPPOSITORIES: solid medicinal dosage forms formulated and prepared for administration into body cavities
- Rectal, vaginal (pessary), urethral suppositories
- Melt at body temperature or dissolved by mucous or body secretions locally
- Produce a local action, may have systemic absorption and/or mechanical/physical effect
- Available as commercial preparations or compounded

URETHRAL SUPPOSITORY: alprostadil (PGE1) micro-suppository (Muse)
- Erectile dysfunction treatment
 - 125 – 1000 mcg (4 strengths)
- Stimulates adenylyl cyclase, raising cAMP which leads to lower Ca ion and resulting relaxation of smooth muscle increasing arterial blood flow to corpora cavernosa → penile erection
- Onset 5-10 mins; duration 30-60 mins
Lecture 18

Pharmaceutics of Suppositories

Formulation Decisions:

<table>
<thead>
<tr>
<th>Choice of Dosage Form</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppository</td>
<td>Easy administration</td>
<td>Melting takes times</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mostly suspension</td>
</tr>
<tr>
<td>Enema</td>
<td>No melting process</td>
<td>Packaging more complex</td>
</tr>
<tr>
<td></td>
<td>Mostly solution</td>
<td>Demanding administration</td>
</tr>
<tr>
<td></td>
<td>Larger volume may give faster absorption</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice of Base</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty</td>
<td>Hardly any incompatibility</td>
<td>2 compartments → takes more time</td>
</tr>
<tr>
<td>Water</td>
<td>1 compartment → faster</td>
<td>Dissolution of suppository takes more time than the melting of a fatty one</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice of Active Substance</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt/free base/free acid</td>
<td>Form not soluble in base (is) often positive for a faster release</td>
<td>Active substance, very badly soluble in rectum fluid, is hardly absorbed</td>
</tr>
<tr>
<td></td>
<td>Best form in combo with type of base has to be chosen based on literature data</td>
<td>Active substance, completely ionized, is hardly absorbed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice of Particle Size (for susp)</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty base, active substance, good water soluble</td>
<td>Rate of particle transport to interface determines rate of active substance release</td>
<td>Particles maximal 180 µm, otherwise the preparation will be difficult</td>
</tr>
<tr>
<td></td>
<td>Larger particles have faster transport and therefore a faster release</td>
<td>Particles > 240 µm not optimally spread with the base → slower release</td>
</tr>
<tr>
<td>Fatty base, active substance, poorly water soluble</td>
<td>Extent of interface determines rate of release</td>
<td>Very small particles may irritate the rectal mucosa if the solubility is a little better</td>
</tr>
<tr>
<td></td>
<td>Best choice is a large volume of the dosage form and a small particle size</td>
<td>Ex/ ASA does, paracetamol does not</td>
</tr>
<tr>
<td>Water (soluble) base, active substance, poorly water soluble</td>
<td>Small particles dissolve faster</td>
<td>Particles maximal 180 µm, otherwise the preparation will be difficult</td>
</tr>
<tr>
<td></td>
<td>Larger volume of dosage form → faster absorption</td>
<td></td>
</tr>
</tbody>
</table>

Other Characteristics:

Hydroxyl value	Varying the ratio of mono-, di-, tri- glycerides yields varying hydroxyl values
	Higher hydroxyl value results in higher elasticity and higher viscosity
	Suspending substances better when molten
	Less fracturing after cooling
	Low hydroxyl values release drugs faster
Acid value	Lower acid value has less chemical reactivity = results in less irritation to mucous membranes
	Affects ionization of the drug, ionized drugs do not cross membranes and cannot exert effect
Iodine value	Is a measure describing the number of double bonds in an oil or fat
	Large number of double bonds is associated with increased tendency for oxidation (leading to deterioration and loss of effect and may produce odors)
Peroxide value	The measure of reactive oxygen in the fat base
	Low peroxide value results in less oxidation of active substances by the base, allowing easily oxidizable drugs like chlorpromazine to be formulated